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ABSTRACT: A key component to success in structure-based
drug design is reliable information on protein−ligand
interactions. Recent development in NMR techniques has
accelerated this process by overcoming some of the limitations
of X-ray crystallography and computational protein−ligand
docking. In this work we present a new scoring protocol based
on NMR-derived interligand INPHARMA NOEs to guide the
selection of computationally generated docking modes. We
demonstrate the performance in a range of scenarios,
encompassing traditionally difficult cases such as docking to
homology models and ligand dependent domain rearrangements. Ambiguities associated with sparse experimental information
are lifted by searching a consensus solution based on simultaneously fitting multiple ligand pairs. This study provides a previously
unexplored integration between molecular modeling and experimental data, in which interligand NOEs represent the key
element in the rescoring algorithm. The presented protocol should be widely applicable for protein−ligand docking also in a
different context from drug design and highlights the important role of NMR-based approaches to describe intermolecular
ligand−receptor interactions.

■ INTRODUCTION

Protein−ligand docking has emerged as an attractive and
integrative computational approach in structure-based drug
design (SBDD).1,2 It allows for high throughput virtual
screening of compound databases and subsequent prediction
of protein−ligand binding modes. A reliable protein−ligand
complex structure facilitates optimization of lead compounds to
high affinity drug candidates.3 High quality structural
information is commonly obtained by X-ray crystallography,
which is often limited by high costs and compatibility with
crystallizationboth issues potentially forcing the dismissal of
the SBDD route for the target of interest. Conversely,
computational docking protocols are rapid, inexpensive, and
dependent only on the availability of an atomic resolution
structure of the target protein. Despite being a driving force in
SBDD, docking protocols suffer from a limited reliability of the
prediction of the interaction mode for arbitrary protein−ligand
pairs,4,5 partly due to the inability to account for protein
flexibility and entropic effects in an accurate manner.6

Docking routines commonly account for moderate protein
flexibility either by allowing partial steric clashes, or by
considering independent side-chain rotations.7,8 Inclusion of
backbone motions would in most cases greatly increase the
degrees of freedom and negate on-the-fly sampling of protein

conformational space. In the case of proteins which undergo
structural changes beyond side-chain rearrangements upon
ligand association, docking can be performed on a predefined
ensemble of experimentally determined receptor structures
(ensemble docking).6,9 This seems to be a viable alternative
when a representative set of structures is available.10

Conversely, when an ensemble of experimental structures is
not available, computational tools can aid in exploring the
conformational space. Of these, molecular dynamics (MD)
simulations have been extensively used to generate structural
ensembles for docking experiments.11−13 The limitation of
ensemble docking relates to the a priori knowledge required to
judge the available ensemble, and success might be strongly
related to the presence of a member structure with high
similarity to the “correct” receptor state with the query ligand
bound.7 Moreover, it inflicts additional pressure on the docking
scoring functions, which should be competent to discriminate
between receptor conformers, and not only between different
orientations of the ligand in a defined receptor binding pocket.
Recent advances in nuclear magnetic resonance (NMR)

spectroscopy have accelerated SBDD,14,15 in particular with
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respect to screening of low affinity compounds for lead
identification.16 Detailed information on the protein−ligand
binding pose can be obtained by “protein-detecting”
techniques, including chemical shift perturbation analysis
from HSQC experiments,17−19 and acquisition of protein−
ligand NOEs20both approaches facilitate filtering query
docking modes. A general challenge in the “protein-detecting”
techniques is the assignment of the protein resonances, which
requires 13C/15Nand possibly 2H-labeled protein, and limits
the size of the receptor to ∼50 kDa. As an alternative, “ligand-
detecting” techniques can be used for low affinity ligands, such
as (a) transferred nuclear Overhauser effect (NOE) experi-
ments, with the capability to reveal the bioactive conformation
of the ligand,21,22 (b) interligand NOEs (ILOES) for
identifying binding of two ligands to adjacent sites,23 and (c)
saturation transfer difference (STD) experiments, which can
reveal which part of the ligand is involved in binding.24

The methodology entitled INPHARMA (Interligand NOEs
for PHARmacophore MApping) exploits NOEs occurring
between two ligands binding competitively to the same target
protein measured in a “ligand-detecting” NOESY experiment.25

These interligand NOE cross-peaks result from magnetization
transfer mediated by receptor protons and are not limited by
the protein size or availability of isotope-labeled protein. The
technique requires low affinity ligands, making it attractive for
lead generation. Interligand INPHARMA NOEs can be
theoretically estimated for pairs of protein−ligand complexes
(generated, e.g., by protein−ligand docking), and subsequently
compared to the experimental ones to discriminate the correct
binding modes (see ref 26 for a more extensive theoretical
introduction). However, the solutions attained from fitting
experimental and theoretical interligand NOEs are often not
unique, and might lead to false positive hits or ambiguous
answers. In previous work, the ambiguity was lifted either by
manual inspection of the correlation graphs,27 or by employing
biochemical structure activity relationship (SAR) data.28 Both
ways are not viable when handling a larger number of ligands or
binding poses.
Despite promising results for a variety of NMR-based

techniques in SBDD, the majority of them have only been
benchmarked using the receptor structures in which the
protein−ligand was crystallized. Thus, their performance in
more realistic docking experiments, where the exact con-
formation of the receptor structure is not known a priori, is still
unclear. In previous work,29 we have demonstrated that the
performance of INPHARMA deteriorates when the starting
structure for the docking experiments is inaccurate. In this work
we aim at establishing a rigorous approach for induced-fit
docking using a combination of NMR-derived NOE restraints
and extensive molecular modeling. Protein Kinase A (PKA) is
used as the model system, due to evident structural changes
upon ligand binding. We present a novel algorithm, entitled
INPHARMA-STRING, which robustly filters out false positive
docking modes, even in the presence of only sparse NMR
information. We demonstrate the performance of the new
rescoring function on five diverse ligands and a series of realistic
docking scenarios, ranging from the fully open apoenzyme to
the inhibitor bound closed form of PKA. The highly
complementary methods employed in this study reveal a
previously unexplored potential of obtaining robust docking
results for difficult scenarios.

■ MATERIALS AND METHODS
Materials. A set of five PKA inhibitors was collected from our in-

house compound library based on their chemical diversity and low
affinity for PKA (Figure 1). The ligands, referred to by their PDB
ligand ids (LL1, LL2, M77, PTV, and PZX) obtain dissociation
constants (KD) ranging from 6 to 30 μM. High resolution structures of
PKA bound to ligands LL1, LL2, and M77 were collected from PDB
with ids: 3DNE, 3DND, and 1Q8W, respectively. Structures of PKA
bound to ligands with ids PTV and PZX were obtained by X-ray
crystallography (see below).

Hamster PKA for NMR experiments was prepared starting from
constructs described elsewhere,27 and stored in perdeuterated PBS
buffer (pH 7.4, [NaCl] = 150 mM). The buffers for both the ligand
characterization and the INPHARMA experiments contained an
addition of 5% in volume of DMSO. NMR samples contained
ligands:protein in a 10:1 stoichiometric ratio for a final protein
concentration of 25 μM.

INPHARMA Experiments and Calculations.We collected a total
of 10 INPHARMA experiment sets, corresponding to all pairwise
combinations of the five ligands. Each INPHARMA set was recorded
as a fully interleaved scan by scan series of NOESY spectra with mixing
times 300, 500, and 700 ms. Experimental acquisition details are listed
in the Supporting Information. Spectral assignment and peak
integration was made using NMRViewJ30 and Felix 2007. The relative
KDs of the ligands were estimated by means of STD competition
experiments.31 Ligands τc was set to 0.1 ns, a value in agreement with
estimates obtained from T1 inversion recovery and T2 CPMG
experiments performed with the J-coupling free PROJECT
sequence.32 The R1 and R2 values obtained were compared with
theoretical decays of isotropic spheres with increasing τc. The
concentration of the ligands was 250 μM, with the exception of
PTV, which degraded over time. Its concentration was estimated for
every experiment set and varied between 150 μM and 80 μM. The
concentration of the complex was tuned by fitting experimental
intraligand NOEs (Table S1). Theoretical interligand INPHARMA
NOEs were calculated for all protein−ligand pairs in each of the
docking scenarios using an in-house written program in accordance to
the previous theoretical development, using a direct exchange model
to describe the protein−ligand kinetics.26

Crystallization. Bovine PKA in complex with ligands PTV and
PZX was crystallized following previously described procedures33

(Supporting Information and Table S2). Coordinates are available
from the RCSB protein data bank with accession codes 4IJ9 (ligand
PTV) and 4IE9 (ligand PZX).

Structural Analysis and Cross-Docking. All PKA structures with
a sequence identity higher than 98% to the human sequence were
collected from the RCSB protein databank,34 and analyzed using the
Bio3D package.35 Five representative high resolution structures with
PDB id 3DND, 3AGM, 1Q8W, 1CDK, and 1CMK were selected as
targets for cross-docking. In addition, a homology model of human
PKA was generated with Modeller36 based on the high resolution

Figure 1. Structures of PKA ligands. Positions for NMR-detectable
hydrogen moieties are marked numerically. Red and orange fonts
denote overlapping chemical shifts between two or more protons,
whereas protons whose resonance overlaps with the solvent are
marked by an asterisk.
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structure of protein kinase B (PKB; PDB id 2JDO). The evaluation of
cross-docking of ligands LL1, LL2, M77, PTV, and PZX was carried
out with Surflex37 and Glide (Schrödinger), in which 20 docking
modes were generated for each protein−ligand combination.
Ensemble docking was carried out with Surflex on the PKA X-ray
structures with PDB ids 3DND, 3AGM, 1Q8W, 1CDK, and 1CMK
(see also Supporting Information for docking using a larger ensemble).
All docking experiments were conducted using flexible ligands. Default
values of parameters for both programs were used apart from an
RMSD similarity filter set to 1 Å for the Surflex docking.
MD Simulations and Ensemble Docking. All-atomic models of

the high resolution X-ray structures with PDB id 1CDK, 1CMK, and
the PKA homology model (see above) were generated with
AmberTools38 using the corresponding Amber99SB force field.39

MD simulations were carried out in explicit solvent employing a 1 fs
time step under periodic boundary conditions (constant volume).
Bonds involving hydrogen atoms were kept rigid using SHAKE, and
particle mesh Ewald was applied with an 11 Å cutoff (see also
Supporting Information for more details). Ligands, with which the
structure was crystallized, were included in the simulations for PDB id
1CDK and the homology model. Ligand parameters were generated
using the generalized Amber force field.40

Ensemble docking to cluster representatives derived from MD
simulations was performed with Glide, and up to 20 docking modes
per ligand were collected for each receptor structure. All protein−
ligand models were issued to a 5 ps long MD simulation (generalized
Born solvation model), and a total of 6 frames from each MD
simulation were collected for further analysis (see Supporting
Information for more details). The binding free energy was estimated
by MM/GBSA calculations and the 50% highest energy binding modes
(energetically unfavorable) were discarded to reduce the computa-
tional load. Simulations and trajectory analysis were performed with
the Amber 11 software suite.

■ RESULTS

Structural Characterization and Docking Evaluation.
PKA is an extensively characterized pharmacological target with
more than 130 hits in the RCSB protein databank. To
investigate this structural diversity, we collected all 88 structures
with sequence identity >98% to human PKA. This includes
ATP bound conformers as well as structures bound to ATP
analogues, ligands, and peptides. Principal component analysis
on the set of PKA structures, combined with structure based
clustering, reveals that the PKA structures can be divided into
three distinctive conformational states: (1) fully open, (2)
intermediate, and (3) fully closed, deviating up to 1.9 and 2.1 Å
in terms of Cα and heavy-atom binding site RMSD,
respectively (Figure 2A; Figure S1).
Due to the relatively large structural variability, PKA appears

as an ideal target to evaluate the ability of current docking
programs to reproduce the binding poses of ligands while using
receptor structures with an increasing structural deviation from
that of the receptor−ligand complex. We therefore carried out
cross-docking experiments, using two state-of-the-art docking
programs and a representative set of receptor structures ranging
from the fully open apo enzyme (PDB id 1CMK) to the fully
closed conformation (PDB id 1CDK), as well as three
structures showing an intermediate conformation (PDB ids
3DND, 3AGM, 1Q8W). In addition, the analysis was extended
by performing ensemble docking to a pool of X-ray structures,
and moreover, by including a low quality homology model of
human PKA built from PKB (PDB id: 2JDO). We limit the
docking evaluation to a set of five diverse ligands (LL1, LL2,
M77, PTV, and PZX; Figure 1) also relevant for the subsequent
NMR experiments. For this evaluation PKA in combination
with the two new fragments with ids PTV and PZX were

crystallized and the protein−ligand structures were obtained at
2.6 and 1.9 Å resolution, respectively.
The results of the docking evaluation are summarized in

Figure 2B (Surflex) and demonstrate a general decline of
performance with increased structural deviation from the
receptor conformation in which the ligands were crystallized
(see also Figure S2 for Glide results and a more extensive
analysis of ensemble docking). Docking to the high-resolution
X-ray structures with PDB ids 3DND, 3AGM, and 1Q8W
yields a success rate of 60−80% (defined as the proportion of
ligands in which the correct binding pose is ranked as #1 by the
docking program). These structures correspond to the
intermediate conformation and are representative of the
majority of the crystallized structures with a bound inhibitor
(Figure S1C). Docking to the fully closed structure (PDB id
1CDK) resulted in a lower success rate (40%); furthermore,

Figure 2. Structural variation of protein kinase A and cross-docking.
(A) Visualization of three representative PKA structures superimposed
on the large lobe: fully open apo (blue; PDB id 1CMK), intermediate
(red; PDB id 3DND), and fully closed (green; PDB id 1CDK). Ligand
present in PDB id 1CDK is shown in stick and surface representation.
(B) Cross-docking (with Surflex) of five selected ligands (column-
wise) to a set of six representative PKA structures (row-wise). Last row
(“Pooled”) shows the results of X-ray ensemble docking (3DND,
3AGM, 1Q8W, 1CDK, and 1CMK). Structural deviation from the first
docking mode to the X-ray structure (RMSD value in each cell) is
indicated as a heatmap in color range blue (low RMSD) to red (high
RMSD). The ranking of the first docking mode with an RMSD < 2 Å
to the X-ray binding pose is noted inside each cell. The docking score,
defined as the proportion of ligands in which the correct binding pose
is ranked as #1 by the docking program, is shown in the last column
for each receptor structure. PKB: Homology model of PKA built from
PKB.
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among the 20 first docking modes for ligands PTV and PZX
there were no poses with an RMSD < 2 Å to the X-ray binding
pose. Finally, the PKA homology model and the fully open apo
enzyme (PDB id 1CMK) yielded docking success rates as low
as 20% and 0%, respectively. This demonstrates the general
challenge of obtaining reliable results with current docking
protocols, even when high-resolution structures are available.
NMR-Based Rescoring. The deficiency in cross-docking

experiments prompted us to develop a new rescoring protocol
based on experimentally obtained NMR data. To this end, we
measured 30 INPHARMA experiments corresponding to three
NOESY mixing times for each pairwise combination of the five
ligands of Figure 1 in the presence of the target protein
(Figures S3−S5).
Of the 10 ligands combinations, LL2-PTV represents the

most challenging case, due to the ambiguousness of the
experimental data set (Figure S3). The majority of the 20
INPHARMA NOEs recorded (6−7 per mixing time) involve
overlapping resonances of PTV hydrogen atoms 3, 5, and 8,
located in two opposite parts of the molecule (Figure 1). On
the contrary, ligand pairs such as LL1-M77 display more than
40 INPHARMA NOEs with fewer overlapping resonances.
As a first test case, we evaluated the ability to rescore the

docking modes to the PKA structure in the intermediate
conformational state (PDB id 3AGM). We thus estimated the
theoretical INPHARMA NOEs expected for all combinations
of the docking modes (i, j) for each ligand pair (LA, LB). The
resulting theoretical NOEs were evaluated with respect to their
agreement with the experimental NOEs using the Pearson
correlation coefficient (R), which we refer to as INPHARMA
score. The value of the INPHARMA score for two
representative ligand pairs is correlated in Figure 3 to the
structural deviation of the ligands from their correct
orientations. Docking modes in agreement with the X-ray
structure obtained a high correlation with the experimental
NOEs for all 10 combinations (Figures 3 and S6). Notably,
LL2 and PZX, which docked incorrectly to the 3AGM receptor

(Figure 2B), were correctly rescored using a single
INPHARMA run (Figure S6). However, the observation of
false positives for many of the ligand pairs limits the confidence
of the selection (Figures 3A and S6). The extensive presence of
false positive underlines the need for a better rescoring
algorithm that would leverage the ambiguities and deliver a
precise and accurate selection of binding modes. Such an
algorithm is described in the next paragraph.

INPHARMA-STRING: A Consensus Criterion for Cross-
Docking. In view of the presence of false positives in the
INPHARMA selection, we sought a method that could
simultaneously interpret the INPHARMA information from
multiple ligand pairs to exclude false positive hits, in an
automated approach. Since each individual INPHARMA
experiment comprises a pair of ligands (i.e., LA−LB), each
ligand also occurs in combinations with other ligands (e.g., LA
with LC, LD, etc.). The property of such a composition of the
experiments can be exploited to determine a consensus selection
of the docking modes. Let (LA, LB, LC) be a set of 3 ligands
whose docking modes are characterized by indices i, j, k,
respectively. A string of docking modes (LAi, LBj, LCk) is
selected if and only if all combinations of ligand docking modes
(LAi−LBj, LAi−LCk, LBj−LCk) score high with respect to the
experimental INPHARMA data. This approach is entitled
INPHARMA-STRING, as a string of binding poses is scored
and selected instead of pairs (Figure 4).

INPHARMA-STRING is applied in an iterative way. First,
we select the top T (e.g., top 1%) combinations of binding
modes for each ligands pair (ranked by their INPHARMA
score). Among these selected poses, one or more N-tuple of
binding poses is searched for which the consensus criterion is
satisfied. If this N-tuple is found, the k docking modes for the N
ligands are returned as the final selection. If no N-tuple in the
pool satisfies the INPHARMA-STRING criterion, the percent-
age of poses (T) is increased until such an N-tuple is found.

Figure 3. Evaluation of the INPHARMA score. The INPHARMA
score vs the structural deviation (RMSD) to the correct binding pose
is shown for 2 representative ligand pairs: (A) LL1-LL2, and (B) LL1-
M77. Each dot represents one combination of two docking modes
(LAi, LBj), and the maximum RMSD of the two ligands to the correct
crystallographic binding pose is shown. The black circle marks the pair
with highest INPHARMA score, and the related RMSD values are
shown in the top right corner of each plot. Blue dots (above the red
dashed line) depict the 12% highest scoring (by INPHARMA)
docking modes and correspond to the set of binding modes needed to
obtain a minimum consensus selection between all ligand pairs (see
paragraph INPHARMA-STRING).

Figure 4. INPHARMA-STRING filtering protocol. Ranking (by
INPHARMA score) of docking modes associated with three ligand
pairs (LA−LB, LA−LC, LB−LC) is shown in (A). A consensus criterion
is searched for each “string” of docking modes in which all pairwise
combinations should be above the threshold (T%). The consensus is
searched among the top T% (above blue dashed line) ranking docking
modes. Here, pairs of docking modes (LA1−LB3 and LA1−LC1) are
discarded because (LB3−LC1) is below the threshold (A) and the string
of docking modes (LA1, LB3, LC1) does not fulfill the consensus
criterion (B). If a minimal consensus is not found, the threshold (T) is
increased and a new iteration is initiated including new docking modes
for each experiment (C).
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This iterative, data-driven approach is used to avoid selection
bias by imposing a hard cutoff on the INPHARMA score.
We applied the consensus criterion for the docking modes of

3AGM by iteratively considering an increasing amount of
docking modes, ranked by their INPHARMA scores, until we
find a consensus quintuplet of binding modes for the five
ligands. Using 12% of the top ranking docking modes yields a
consensus selection of binding poses for all five ligands,
showing a remarkably low RMSD to the X-ray structures of 0.6,
1.6, 0.8, 1.3, and 1.2 Å, respectively (Figure 5). Similar results

are obtained for the rescoring of the ligand docking modes to
the two other receptor structures in the intermediate
conformation (Table 1). In addition, we benchmarked the
same approach using only three ligands (the minimum input
for INPHARMA-STRING). The performance is, as expected,

lower than when using five ligands, and depends on the number
and nature of the INPHARMA NOEs available for the three
chosen ligands (Table S3). For this set of ligands, an
unambiguous result was obtained starting from five ligands.
Employing the NMR-based rescoring and the consensus
criterion selection protocol effectively filters out false positives
suggested by the docking program and by the pairwise
INPHARMA selection. These results provide prospects for an
improvement of binding pose prediction also in the more
difficult scenarios presented in Figure 2B.

Evaluation of Docking Experiments. In the case of the
fully closed receptor structure (PDB id 1CDK) only LL2 and
M77 were correctly predicted by the docking experiment
(Figure 2B). Moreover, PTV and PZX did not reach an RMSD
< 2 Å for the 20 first docking modes considered here, possibly
due to the more closed binding site, which restrains the space
available for the ligands (Figure 2A). This is evidently
problematic, since the INPHARMA filtering protocol is
dependent on the presence of the correct binding orientation
in the pool of binding modes. To assess whether the proposed
protocol would be able to identify the absence of correct
binding modes in the pool, we repeated the INPHARMA-
STRING protocol using the docking modes obtained for the
fully closed receptor structure (Figure S7). With a cutoff on the
INPHARMA score of 0.5 and using up to 50% of the pairs for
each ligand combination, the consensus selection was not
found. Thus, INPHARMA-STRING correctly identifies the
absence of the correct binding mode in the pool of docked
complexes.

INPHARMA-Guided Ensemble Docking. The deficiency
to sample the correct binding pose of PTV and PZX in the fully
closed receptor structure possibly relates to the shape of the
binding pocket that cannot accommodate these ligands in the
correct orientation. Consequently, a single static receptor
structure might in many cases not be sufficient for an optimal
docking experiment. To address this problem, we expanded the
protocol described above to incorporate full protein flexibility
by employing ensemble docking to MD-generated conformers.
For this purpose we conducted a 5 ns long MD simulation of

PKA starting from the fully closed conformational state with
bound ligand in an explicit solvent environment. The
simulation provided a model of the accessible conformational
space not only in the immediate vicinity of the starting
structure, but also in the direction of the intermediate structure
(defined by PDB id 3DND; Figure 6). To reduce the
abundance of MD-generated conformers to a more affordable
level for ensemble docking, the trajectory was processed by
employing a binding site RMSD-based clustering. This resulted
in a set of 10 representative conformers (Figure 6), which were
subsequently used in a redocking experiment. For each cluster
representative, we generated 20 docking modes per ligand.
Each complex was subjected to a short local MD refinement to
allow for mutual adaptation of the protein and ligand. Six
snapshots per complex were retained along this trajectory,
yielding a total of 1200 structures per protein−ligand complex.
Of this ensemble, only the 50% with the lowest MM/GBSA
free energy was retained (see Supporting Information for
details). For the retained 600 models, the theoretical
INPHARMA-NOEs were estimated and assessed with respect
to the agreement with the experimental INPHARMA-NOEs.
The corresponding evaluation of the INPHARMA score and
RMSD is shown in Figure S8, and shows that 3 of 10 individual
INPHARMA runs yielded the correct ligands orientations

Figure 5. Consensus selection of docking modes. The final selection of
docking modes to PDB id 3AGM of the ligands LL1 (A), LL2 (B),
M77 (C), PTV (D), and PZX (E). The ligand binding pose in the X-
ray structures are shown as gray sticks, while docking modes selected
by INPHARMA-STRING are shown in cyan sticks. The related
RMSD values to the X-ray structure for the selected binding modes are
noted in Table 1.

Table 1. Performance of INPHARMA-Guided Dockinga

LL1 LL2 M77 PTV PZX

3AGM 0.3−0.6 0.6−1.6 0.8 1.3 0.5−1.3
3DND 0.4−1.1 1.5 0.8 2.1 0.2
1Q8W 1.9 1.6−1.9 2.2 1.2−4.3 1.6
Pooled 0.4 1.6 1.0 4.3* 0.2

1CDKMD 1.3 1.3−1.5 0.9 2.3 0.9
PKBMD 1.3 0.9 1.3 0.6 1.7
1CMKMD 0.8 1.5 1.6 0.9 2.1

aRMSD values (in Å) for the predicted binding modes (by
INPHARMA-STRING; to their respective X-ray structures) of the
five ligands (column-wise) are provided for each docking scenario
(row-wise). Results are presented for conventional and X-ray ensemble
docking above the empty row, and MD ensemble docking (noted with
MD in subscript) below the empty row. PKB: Homology model of
PKA built from PKB (PDB id: 2JDO). *Correct orientation, wrong
internal conformation.
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directly, while the remaining runs provided 2−3 alternative
docking orientations per ligand. Finally, by applying IN-
PHARMA-STRING, a selection of the five binding modes was
provided, in which LL1, LL2, M77, and PZX, were below the
critical threshold of 2 Å to the X-ray structure, and PTV
obtained the RMSD of 2.3 Å (Table 1, Figure S8, Figure S9).
The same approach was followed for the homology model

(PKA built from PKB, with a sequence identity of 42%), and an
even better agreement with the X-ray structures was observed
after applying INPHARMA-STRING, yielding RMSDs of 1.3,
0.9, 1.3, 0.6, and 1.7 Å for LL1, LL2, M77, PTV, and PZX,
respectively (Figure S9, Figure S10). Thus, the proposed
combination of MD simulations, ensemble docking, and
INPHARMA-STRING rescoring provides a remarkable
improvement of the ligand binding pose prediction, even
when applied to receptor structures with relatively large
structural deviation from the target receptor (Table 1).
Application to an Induced-Fit Scenario. The final test

case in this study represents the fully open apo enzyme of PKA
(PDB id 1CMK), in which the binding poses of all five ligands
were incorrectly predicted in the conventional docking
experiment (Figure 2B). Also in this case we attempted to
rescore the docking modes (obtained on the single receptor) by
INPHARMA-NOEs. Employing the consensus criterion
yielded a selection only when considering the 36% top hits,
again suggesting insufficient sampling of the correct poses in
the docking experiments.
Consequently, we followed the approach for INPHARMA-

guided ensemble docking to MD-generated conformers. In the
case of the homology model and the fully closed state, the
conformational variability of the protein binding pocket was
modeled by MD simulations of the protein containing the
ligand with which the crystallographic structure was obtained.
Although these ligands differ from the five query ones, the
presence of a ligand in the binding pocket is potentially
important for maintaining a reasonable “holo shape” of the
binding site throughout the MD simulation. Thus, for the fully
open apo structure, an alternative strategy was necessary to
model the conformational variability while conserving a holo
shape of the binding site. Following previous work, which
suggested the use of the largest ligand for generating by MD

simulations conformational ensembles for docking,41 we
conducted a 40 ns long MD simulation of the top docking
hit of the receptor−M77 complex. Starting from a binding site
Cα RMSD of 1.4 Å, the MD simulation sampled the
conformational space in the direction of the intermediate
conformational state (PDB id 3DND) of PKA, which decreased
the RMSD down to 0.8 Å (Figure S11). The resulting
trajectory was then processed following the clustering analysis
and ensemble docking protocol described above. Applying
INPHARMA-STRING resulted in a selection of docking
modes in a remarkable agreement with the X-ray structures
(RMSD values of 0.8, 1.5, 1.6, 0.9, and 2.1 Å, for ligands LL1,
LL2, M77, PTV, and PZX, respectively; Table 1, and Figure
S12). Moreover, the receptor structures associated with each
selected ligand docking mode display a good agreement with
the intermediate conformational state of PKA (Figure 7).

Although the deviation to the target X-ray structure is ∼1 Å, all
selected receptor structures are considerably closer to the
intermediate conformation than the starting structure. This
demonstrates the ability of the INPHARMA-guided ensemble
docking protocol to rigorously predict protein−ligand binding
modes even in the presence of large structural changes.

Figure 6. Conformational ensemble generated by molecular dynamics.
The ensemble of cluster representatives obtained from an MD
simulation starting from the closed (green; PDB id 1CDK) state of
PKA is shown. The intermediate target conformation is colored red
(PDB id 3DND), and cluster representatives are colored gray.

Figure 7. Selected protein−ligand conformers. Receptor conforma-
tions in complex with selected binding modes of LL1 (A; maximum
deviation) and PTV (B; minimum deviation) are shown for the
ensemble docking to the fully open apo structure. Modeled receptor
structure is colored gray, while the X-ray structures of the open apo
and intermediate conformational states are shown in blue and red,
respectively. Cα binding site RMSD of the selected receptor structures
are 1.2, 1.0, 1.0, 0.9, and 1.1 Å, for the hits corresponding to ligands
LL1, LL2, M77, PTV, and PZX, respectively. The inset shows the
predicted binding pose for the two ligands (gray) in comparison to the
X-ray structure (red).
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New Protocol for INPHARMA-Guided Rescoring. The
docking experiments conducted here portray representative
scenarios, in which the available target structure is (1) a
structure with a different inhibitor/substrate, (2) a low quality
homology model, or (3) an apo structure. On the basis of these
experiments we aimed at designing an extended protocol for
rescoring protein−ligand binding modes obtained from either
conventional or ensemble based docking experiments (Figure
8). In essence, we propose a protocol, which contains two paths

determined either by the a priori knowledge of the query
system, or by INPHARMA-guided evaluation of the docking
modes. Under the assumption that the target protein bound
with the query ligands would adopt a similar conformation as
the available protein structure, a direct rescoring of the docking
modes obtained on a single receptor structure can be
performed (Figure 8A). In the presence of several X-ray
structures of the target protein, the same approach can be
utilized for ensemble docking to the pool of X-ray structures.
Conversely, if the INPHARMA based consensus selection

indicates insufficient conformational sampling of the ligand
binding space, or when docking to a low-quality homology
model or an apo receptor, we suggest using a more extensive
approach, utilizing MD-generated ensemble docking (Figure
8B). In this branch of the protocol, we propose the generation
of conformers through MD simulations of a holo state of the
receptor. Ideally, an available protein−ligand X-ray structure
can be used as a starting structure for the MD simulation. If
only an apo structure is available, a more realistic “holo”-like
conformational ensemble can be generated by performing an

initial docking to the apo structure, in which one or more
starting structures can be issued to subsequent MD simulations.
Prior to the calculation of the theoretical INPHARMA-NOEs
we have included two additional computational steps: a short
binding site MD of each docking mode, which allows for
mutual protein−ligand adaptation, and subsequent filtering of
high energy conformations.

■ DISCUSSION
This work demonstrates the potential of combining extensive
molecular modeling with NMR-guided ensemble docking to
decipher receptor−ligand interactions in the case of induced-fit,
and highlight the importance of NMR in SBDD.42,43 NMR
derived interligand INPHARMA-NOEs represent the key
element in the new rescoring function of computationally
generated ligand binding modes. Based on docking scenarios
containing ligand-induced domain movements of PKA, we
develop an extended protocol (INPHARMA-STRING), which
rigorously determines the correct protein−ligand binding
modes.
Modeling induced-fit effects represents one of the major

challenges in protein−ligand docking, and the ability to rapidly
obtain a reliable model of the complex would potentially
accelerate SBDD. Although side-chain movements are found in
only 50% of the structures crystallized with multiple ligands,
and backbone motions in only 7%,44 it is commonly recognized
that proteins can exists in a number of substates.45,46 The
apparent “lack” of conformational variability suggested by the
PDB has been attributed to the fact that the database may be
artificially enriched by “rigid” proteins7 as compared to
“flexible” proteins or even intrinsically unstable proteins,
which only obtain a defined structure upon ligand-binding.47

For this reason the ability to model protein flexibility beyond
side-chain rearrangements has been a hot topic for over a
decade, and impressive development has opened the way to
improved docking performance in the presence of moderate
induced-fit effects.48−50 At the same time, MD simulations have
taken an important role in modeling large scale ligand-induced
conformational changes (see, e.g., ref 51). Modeling techniques
have shown the ability to complement experimental ap-
proaches, in particular in light of the limited picture a single
crystallographic structure represents.52 For the application of
binding pose prediction, the protein conformational space can
be searched by MD to generate a pool of conformers for
ensemble docking protocols.11,13 The primary benefit of
employing MD simulations to generate conformational
ensembles is the fully flexible model guided by empiric force
fields in a realistic explicit solvent environment. Although
detailed classical simulations yielded reasonable results here,
alternative approaches such as accelerated simulation proto-
cols,51 loop-modeling, or more specialized protocols for
generating holo structures based on apo structures53,54 could
be suitable for other systems. In the case of PKA we illustrate
by combining modeling and INPHARMA-guided docking that
selected receptor conformers obtain a relatively small structural
deviation from the target X-ray structures. This demonstrate
the remarkable feature of the INPHARMA data, which contain
information not only on the ligand binding pose, but also,
indirectly, on the conformation of the binding pocket mediating
the magnetization transfer.
The difficulty of cross-docking has been noted in several

previous studies using different docking software and scoring
functions.5,55−57 Depending on the data set the overall docking

Figure 8. Overview of the INPHARMA-guided ensemble docking
protocol. Depending on the input structure two paths are proposed:
(A) In the case of a high quality “rigid” receptor structure, filtering by
INPHARMA-STRING is performed directly on the docking modes to
the single static receptor. In this scenario, flexibility is only
incorporated through minimization of the docking modes. (B)
Alternatively, with a low quality structure, or in the case of a flexible
target, INPHARMA-guided ensemble docking can be performed on
MD-generated conformers. Here, the receptor structures are collected
from MD simulations, in which protein flexibility is explicitly modeled
in a solvated environment.
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performance ranges from 100% in retrospective self-docking to
∼50%, or even lower, for cross-docking.56 The reported success
rates are in good agreement with the ones we observe. Here, we
associate the evaluation of the docking performance to the
structural deviation between the target complex and the query
receptor structure by utilizing receptor structures with a
binding site RMSD ranging from 0.5 to 1.5 Å (Figure 2B).
Although the general docking performance seems to correlate
with an increased structural deviation, there is also a significant
deviation of the binding pose predictions between the two
docking programs used in this study (Figure 2B; Figure S2).
While ensemble docking might offer a solution to the structural
variability of the receptor, the lack of a robust computational
approach for estimating binding free energies of the query
docking modes limits its value.7 Ensemble docking protocols
have shown good performance with regard to sampling binding
modes that include the correct one;10 on the other hand, the
inaccurate ranking based on in silico binding free energies does
not allow the unambiguous identification of the “correct”
binding mode in many cases. Consequently, employing a
scoring function that uses experimental information appears as
a promising alternative to the computed free binding energies.
Among the two major techniques employed to obtain

structural information on protein−ligand complexes, NMR
emerges for its easy applicability to weakly binding ligands. The
benefit with the INPHARMA technique employed in this study
is its applicability to protein targets of any size. In addition,
13C/15N labeling of the receptor from expression systems and
assignment of the receptor resonances are not needed.25

Conversely, the requirement is on suitable ligand binding
constants, as the observation of INPHARMA-NOEs requires a
dissociation constant of at least 100 Hz.26 Given a sufficient
number of interligand INPHARMA-NOEs the correct binding
modes can be detected with high accuracy. However, fitting
theoretical INPHARMA-NOEs estimated from a pair of
docking modes of two ligands to the experimental NOEs
does not always provide a unique solution (Figure 3A).27 In
this work we address this ambiguity by considering multiple
ligand pairs simultaneously. Each new ligand pair provides new
information that leverages the ambiguities associated with any
individual pair. For this purpose we have presented a
sophisticated computational procedure, which exploits a
criterion of consensus between individual INPHARMA experi-
ments and their corresponding ligand pairs. We show with five
ligands that the approach is robust with respect to false
positives and allows the simultaneous determination of the
correct binding mode of multiple ligands. The procedure also
facilitates the remarkable feature of identifying docking
experiments in which the correct ligand orientation has not
been sampled.
Inclusion of additional experiments, which similarly do not

depend on the NMR resonances of the receptor, can potentially
be an important supplement for the filtering routine presented
here. More specifically, obtaining intraligand restraints (i.e.,
proton−proton distances) from transferred NOE experiments,
or ligand dihedral angles by transferred cross-correlated
relaxation rates experiments,58,59 would provide an additional
source of filtering the pool of generated docking modes.
Alternatively, such information could also be used to dock with
a rigid ligand, whose conformation has been determined
beforehand through transferred-NOEs. In this work, we
decided to discard the transferred-NOEs information and to
use flexible ligands in the docking protocol. Our objective was

to demonstrate that INPHARMA-NOEs alone are sufficient to
discriminate between docking modes and bound ligand
conformations, even in the absence of high quality receptor
structures. The overall improvement of binding pose prediction
(Table 1) over computational docking clearly demonstrates the
potential of the technique.

■ CONCLUSIONS
In summary, we have introduced a new rescoring function of
docking modes based on NMR-derived NOE data. By
exploiting a criterion of consensus between the docking
modes, the new algorithm, entitled INPHARMA-STRING,
shows a remarkable performance of filtering false positives,
even in the presence of sparse NMR data. Combined with
extensive molecular modeling and simulation techniques, we
show the impact of the proposed protocol also for induced-fit
docking. This protocol should be widely applicable for
protein−ligand docking and highlights the important role of
NMR-based approaches in structure-based drug design.
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